

Specifications and Construction

XLGV02/XLGH02-Series - 60 Hz

GENERAL

The contractor shall provide labor, material, equipment, and incidentals required to provide ______ (QTY) sewage grinder pumps as specified herein. The pump models covered in this specification are XLGH028, XLGH022, XLGH023, XLGH023, XLGH024, XLGH025 high head and XLGV028, XLGV022, XLGV023, XLGV024, LGV025 high volume grinder pumps. Each pump shall be permanently marked on its stainless steel nameplate indicating that the unit has been certified by an accredited NRTL third party to meet CSA, UL, and FM standards for use in NEC® class 1, division 1, groups C & D and class 1, zone 1, groups IIA & IIB hazardous locations. The pump furnished for this application shall be model ______ as manufactured by Liberty Pumps.

OPERATING CONDITIONS

Each submersible pump shall be rated at 2.5 hp, ______ Volts, _____ phase, 60 Hz, 3450 RPM. The unit shall produce _____ GPM at _____ feet of total dynamic head.

The submersible pump shall be capable of handling residential and commercial sewage and grinding it to a fine slurry, enabling it to be pumped over long distances in pipelines as small as 2" in diameter. The XLGH02-Series submersible pump shall have a shut-off head of 185 feet and a max flow of 50 GPM @ 10 feet of total dynamic head. The XLGV02-Series submersible pump shall have a shut-off head of 110 feet and a max flow of 60 GPM @ 10 feet of total dynamic head.

CONSTRUCTION

Each centrifugal sewage grinder pump shall be equal to the Certified XLGH02/ XLGV02-Series pumps as manufactured by Liberty Pumps, Bergen NY. The casting enclosing the motor shall be constructed of class 30 cast iron. The complete motor enclosure shall be designed and manufactured to meet stringent hazardous location guidelines with performance verified via flame propagation and hydrostatic testing. The motor housing shall be oil-filled to dissipate heat. Air-filled motors shall not be considered equal since they do not properly dissipate heat from the motor. Mating parts shall be machined and sealed with a Buna-N O-ring. All fasteners exposed to the process fluid shall be stainless steel. The motor shall be protected on the top side with a sealed cast iron cord entry plate, which is potted to prevent water from entering through the cord. The motor shall be protected on the lower side with a dual mechanical seal arrangement and an oil-filled intermediate chamber. The upper seal shall be a unitized mechanical seal with silicon carbide faces. The lower seal shall be a two-piece mechanical seal with silicon carbide faces. The upper and lower bearings shall be sized to properly withstand radial and thrust loads produced throughout the full operating range of the pump.

POWER AND CONTROL CORD

The submersible pump shall be supplied with 25, 35, or 50 feet of a multi-conductor cord of type SOOW. These type SOOW power cords carry a voltage rating of 600 V, a temperature rating of 90°C, have oil-resistant insulation, are water- and weather-resistant, UL listed, and CSA approved.

The power cord shall be sized for the rated full load amps of the pump for continuous duty in accordance with the NEC®. A separate type SOOW control cord of equal length shall also exit the pump. The cord entries to the pump shall be protected via two sealing methods. The cords first pass through a Buna-N compression grommet that seals against the outer jacket of the cord. The Buna-N grommet also doubles as a strain relief. Each individual conductor then continues into a chamber that is filled with epoxy potting compound. The epoxy potting compound seals each individual conductor and protects against any intrusion of liquid into the motor cavity in the event of wicking.

MOTOR

The motor shall be oil-filled, Class F insulated, and rated for continuous duty. Since air-filled motors are not capable of dissipating heat efficiently, they shall not be considered equal. The mid chamber design shall allow for oil in the motor chamber to reject heat to the pumped media and provide cooling to the motor. This motor design shall provide significantly reduced operating temperatures. Pumps requiring an auxiliary cooling means shall not be considered equal.

Copper stator windings shall be insulated with moisture-resistant Class F insulation materials, rated for 155°C. The maximum continuous temperature of pumped liquids shall be 40°C. The winding operating temperature at rated horsepower and service factor shall be a maximum of 135°C (1-phase) and 120°C (3-phase) @ 40°C ambient.

Motor shall have UL approved thermostats mounted directly on the stator windings. Motors shall be equipped with direct acting thermal protectors (1-phase) or thermostats (3-phase) which are mounted directly to the motor windings. The thermostat leads of the control cord (3-phase) shall be connected to a motor control relay in the control panel.

BEARINGS AND SHAFT

The shaft shall be supported by two ball bearings. The top bearing shall be a radial contact ball bearing and the lower bearing shall be an angular contact ball bearing designed to handle the radial and axial forces incurred by pumping/grinding. The lower bearing shall be positively retained by a threaded bearing retaining nut, which eliminates any axial movement or rotation of the outer bearing race. Both bearings shall be permanently lubricated by the oil that fills the motor housing. Pump designs requiring scheduled bearing maintenance shall not be considered equal. Pumps with single row lower bearings or sleeve bearings shall not be considered equal. The bearing system shall be sized to provide a minimum of 100,000 hours B10 bearing life throughout the operating range of the pump. Pumps that only provide a 50,000 hour B10 bearing life shall not be considered equal.

The motor shaft shall be made of 303 stainless steel. The shaft shall be designed to withstand the maximum torque and radial loads present during start-up and normal operation. Shafts of carbon steel or chrome-plated shafts shall not be considered equal.

SEALS

The pump shall have two shaft seals separated by an oil chamber. Pumps utilizing single seal technology shall not be considered equal. A leak detection probe shall be positioned in the oil chamber and shall allow for continuous monitoring for lower seal failure. The lower seal shall be a two-piece design that is easily serviceable. Shaft seals shall not require scheduled maintenance. The upper seal shall be a unitized design. The upper and lower seals shall be silicon carbide on silicon carbide. Both seals shall include stainless steel housings and HNBR or Viton elastomers.

CUTTER MECHANISM

The cutter and plate shall consist of hardened 440 stainless steel with a Rockwell C hardness of 58Rc. The stationary cutter plate shall have specially designed orifices through it, which enable the slurry to flow through the pump housing at an equalized pressure and velocity. The stationary cutter plate shall feature patented V-Slice® Cutter Technology. This superior cutting system consists of V shapes to maximize cutting action and arc shape exclusion slots to outwardly eject debris from under the rotary cutter. The rotary cutter shall have (4) blades and be designed with a recessed area behind the cutting edge to prevent the accumulation and binding of any material between rotary cutter and the stationary cutter plate. The cutter shall be capable of over 300,000 cuts per minute. The cutting system shall incorporate close tolerances for optimum performance. Ring or radial cutters, or those that grind on the outside circumference of shall not be considered equal.

IMPELLER

The impeller shall be 316 Stainless Steel. The impeller shall be keyed and bolted onto the motor shaft.

CONTROL PANEL

All XLGH02/XLGV02-Series pumps require a control panel. The control panel shall be equipped with circuit breakers and adjustable overload devices to protect against excess current or electrical problems. This device shall be sized appropriately for the pump model(s) being controlled.

The control panel shall include thermal overload relay(s) that shall shut down the pump in the event the thermostats in the motor open. Thermostats shall be connected in the control panel to maintain temperature classification rating of T4 (135°C).

The control panel shall include a seal fail monitoring device that shall indicate a primary seal failure. The seal fail monitoring device shall be capable of monitoring the resistance of the seal failure probe in the pump. The sensitivity of the seal fail monitoring device shall be adjustable from approximately $1K\Omega$ to at least $250k\Omega$.

The control panel for 1-phase models shall include a motor start circuit that automatically engages and disengages the start windings of the 1-phase motor. The motor start circuit shall consist of a properly sized relay which engages and disengages the motor start windings. A solid state start switch shall monitor start winding voltage and shall control the aforementioned relay. The start and run capacitors shall be properly sized per the motor specifications. A bleed resistor shall be used on the start capacitor to avoid unwanted voltage spikes during startup. Capacitor start/run components (Kit#K001640, 200V; #K001614, 230V) are available for 1-phase models using a non-Liberty Pumps control panel.

Pump Model	Voltage	Control Panel Model		
		Simplex 3-Float	Duplex 3-Float	Duplex 4-Float
XLGH028	200	ISS24HS1=3-5	ISD24HS2=3-5	ISD24HS2=4-5
XLGH022	230	ISS24HS1=3-5	ISD24HS2=3-5	ISD24HS2=4-5
XLGH023	200/230	ISS34=3-611-5	ISD34=3-611-5	ISD34=4-611-5
XLGH024	460	ISS34=3-191-5	ISD34=3-191-5	ISD34=4-191-5
XLGH025	575	ISS54=3-161-5	ISD54=3-161-5	ISD54=4-161-5
XLGV028	200	ISS24HS1=3-5	ISD24HS2=3-5	ISD24HS2=4-5
XLGV022	230	ISS24HS1=3-5	ISD24HS2=3-5	ISD24HS2=4-5
XLGV023	200/230	ISS34=3-611-5	ISD34=3-611-5	ISD34=4-611-5
XLGV024	460	ISS34=3-191-5	ISD34=3-191-5	ISD34=4-191-5
XLGV025	575	ISS54=3-161-5	ISD54=3-161-5	ISD54=4-161-5

QUALITY CONTROL

The pump shall be manufactured in an ISO $^{\circ}$ 9001 certified facility. Manufactured in the USA with US and global components.

SUPPORT

The pump shall have cast iron support legs, enabling it to be a freestanding unit. The legs shall be high enough to allow solids and long stringy debris to enter the pump inlet.

TESTING

The pump shall have a ground continuity check and undergo a hi-pot test for electrical integrity, moisture content, and insulation defects. The motor housing and mid chamber shall be pressurized, and an air leak decay test performed to ensure integrity of the assembled unit. The pump shall be run, voltage and current monitored, and checked for noise or other malfunction. Certified performance testing is available upon request.

PROTECTIVE FINISH

The exterior of the casting shall be protected with corrosion-resistant baked-on epoxy powder coat.

APPLICATIONS

- Municipal Engineered Lift Stations
- · Storm Water Removal
- Wastewater Transfer
- Industrial Wastewater
- Treatment Plants

MATERIAL FEATURES PUMP:

- Grinder High Head or High Volume
- Discharge Horizontal, 1.25" FNPT
- Seals Dual Mechanical, Upper Silicon Carbide/Silicon Carbide with HNBR Elastomers; Lower - Silicon Carbide/Silicon Carbide with Viton Elastomers
- Construction Cast Iron ASTM A48, Class 30, 30,000# Tensile Strength,
 Designed and manufactured to meet CSA, UL, and FM standards for use in NEC
 class 1, division 1, groups C & D and class 1, zone 1, groups IIA & IIB hazardous
 locations; Protected with a Corrosion-Resistant Baked-on Epoxy Powder
 Coating
- Hardware Stainless Steel
- O-ring Seals Buna-N
- Impeller 316 Stainless Steel
- Cutter and Cutter Plate Hardened 440 Stainless Steel
- Cuts per minute -372,600
- Thermal Sensors and Moisture Detection System
- Optional:
 - Cord Length Options (feet) 25, 35, 50

MOTOR:

- 1-Phase 200, 230 Volt, 3450 RPM
- 3-Phase 200/230, 460, 575 Volt, 3450 RPM
- · Oil-filled Motor Housing
- Cast Iron Housing with deep sump design for Improved Heat Dissipation
- Continuous Duty Operation
- Bearings
 - Upper Radial Ball
 - Lower Angular Contact Ball

LIMITED WARRANTY

Liberty Pumps, Inc. warrants that pumps of its Engineered Product line are free from all factory defects in material and workmanship for a period of 18 months from the date of installation or 24 months from the date of manufacture, whichever occurs first, and provided that such products are used in compliance with their intended applications as set forth in the Liberty Engineered Products specifications and technical manuals. The date of installation shall be determined by a completed pump start-up report and warranty registration form.

A pump startup report, filled out by a qualified installer, is required for warranty to take effect. The report must be submitted within 30 days from the installation date and submitted through the Liberty Pumps website. During the warranty period, the manufacturer's obligation, and at its discretion, shall be limited to the repair or replacement of any parts found by the manufacturer to be defective, provided the product is returned freight prepaid to the manufacturer or its authorized service center, and provided that none of the following warranty-voiding characteristics are evident:

The manufacturer shall not be liable under this Warranty if the product has not been properly installed or maintained in accordance with the printed instructions provided; if it has been disassembled, modified, abused or tampered with; if the pump discharge has been reduced in size; if the pump has been used in water temperatures above those shown in the specifications; if the thermal overload(s) and seal moisture probe(s) have not been properly connected (where equipped); if the pump has been used in water containing sand, lime, cement, gravel or other abrasives; if the product has been used to pump chemicals or hydrocarbons; if the product has been moved from its original installation location, or if the label bearing the serial and code number has been removed.

Liberty Pumps, Inc. shall not be liable for any loss, damage or expenses resulting from installation or use of its products, or for consequential damages, including field labor costs, travel expenses, rental equipment, costs of removal, reinstallation or transportation to and from the factory or an authorized Liberty Pumps repair facility.

There is no other express warranty. All implied warranties, including those of merchantability and fitness for a particular purpose, are limited to 18 months from the date of installation or 24 months from the manufacturing date. This Warranty contains the exclusive remedy of the purchaser, and, where permitted, liability for consequential or incidental damages under any and all warranties are excluded.